How Nobel Prizewinners Get That Way

You are barely past thirty and have just received from Stockholm the telegram that says you have won a Nobel Prize for Science. How do you feel? "My God!" cried the Chinese-born scientist T. D. Lee. "What happens now to the rest of my life?" A former physicist tells of Nobel laureates he has known.

When Julian Schwinger came to the Columbia Graduate School of Physics in 1935 at the age of seventeen—five years younger than the youngest of us—he was shy and pudgy, with a schoolboy’s broken complexion; but he had already gone through the most advanced treatises on theoretical physics, quantum theory, and relativity all by himself, as easily and avidly as the rest of us had once gone through Two Years Before the Mast. By comparison, we were illiterates. There was even a rumor that he had published his first scientific paper in the Physical Review at fifteen when he was at Townsend Harris High School. He was at once so obviously in a class by himself that no one bothered to envy him. One thing, each of us assured the others: eventually he would earn a Nobel Prize.

When I say “we,” I mean the group of about a dozen graduate students studying and doing research toward our doctorates, along with a handful of postdoctoral fellows and instructors also in their early or middle twenties. We made up the laboratory population of the department. As it turned out, we were right about Julian. In 1965, he was awarded the Nobel Prize for work in quantum electrodynamics. Also, as it turned out, we proved to have been very poor judges of Nobel Prize material. Sitting right there among us all the time, taking part in our talk and gossip, were three other whom we had passed over completely. The first was one of our research chiefs, I. I. Rabi, who was to win a Nobel Prize in 1944. The second was Polycarp Kusch, a young experimentalist from the Middle West, with large angular movements and a loud assertive voice. He was the Nobel laureate in 1955. The third was Willis Lamb, a tall, thin Californian with a slight squint and a quiet erudition, both in physics and out. In the thirties, Lamb considered himself only as a theoretician—although certainly no then in Schwinger’s class, as far as anyone thought.

Four Nobel laureates out of a group as small as that, at a time when the world population of physicists was over ten thousand, was a remarkably high proportion indeed. All these prizes, though, were still decades in the future. We didn’t know what a genuine Nobel Prizewinner looked like, or even what he did once he had been awarded the prize. From time to time, a few such exalted beings as Harold Urey, Arthur Compton, and Robert Millikan would drop in on us for a public evening lecture, but then they took off again with their radiance unpenetrated.

Our first real contact—certainly my first contact—with a living, breathing, close-enough-to-touch Nobel laureate came in 1938 when Enrico Fermi left Italy with his family, ostensibly to go to Sweden to receive the prize for his work in artificial radioactivity. Instead of returning to Mussolini’s Rome, he kept on going until he came to us at Columbia. He was in his middle thirties at the time. I hoped only that when he’d start giving his lecture on atomic and nuclear physics I wouldn’t open my mouth and make a fool of myself in his seminars. I glimpsed him with awe as he hurried through the Pupin corridors, labs, and offices: a short, quick, long-armed man. His gray eyes looked patient, when they were really only polite. To me, he was already half a god.

About a week after Fermi’s arrival, I was called to Rabi’s office. In those days, Rabi liked to whittle at a small piece of wood as he talked. I had recently finished an apprentice research for him in his molecular-beam techniques, and had passed all my qualifying exams. I came, hoping that he was finally going to put me to work on my doctoral assignment. Instead, he told me he was releasing me from his research group so that I could be free to become Fermi’s assistant. It was as if I had been told I was to report to heaven to sit at the right hand of God. But there was also a nightmare side to all this splendor and that was my feeling that at that particular point of my career I was no more capable of carrying on research physics on the Fermi level and up to the Fermi standard than I was able to walk onstage at the Metropolitan Opera House in the middle of a performance of Tannhäuser and take over the main role. It was the greatest opportunity I had ever had; it was also the most appalling invitation to disaster.

Fermi got to the point the moment I appeared in his office. He asked me what I knew about cosmic rays. I said I knew nothing. He said, no matter, neither did anyone else. He went to the blackboard then and outlined the theory of the experiment he wanted performed, that he wanted us to perform. For the first few minutes, he was remarkably clear. How marvelous it felt to be one of the talented people up here At the Top where life shone! Then everything darkened. He was speaking brilliantly, lucidly, but really to himself, because I no longer understood anything. I kept nodding though; it never occurred to me to ask him to repeat any of the points that I lost. At last, he finished with theory and began to discuss the apparatus I would have to build: pulse-counting circuits, giant Geiger tubes, and appropriate vacuum systems. I felt a little better. I had never made any of the things he asked for, but I knew that I would be able to find out how. Physics had always come more easily to my hands than to my head.

Presented by

The Best 71-Second Animation You'll Watch Today

A rock monster tries to save a village from destruction.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus

Video

The Best 71-Second Animation You'll Watch Today

A rock monster tries to save a village from destruction.

Video

The Case for Napping at Work

Most Americans don't get enough sleep. More and more employers are trying to help address that.

Video

A Four-Dimensional Tour of Boston

In this groundbreaking video, time moves at multiple speeds within a single frame.

Video

Who Made Pop Music So Repetitive? You Did.

If pop music is too homogenous, that's because listeners want it that way.

Video

Stunning GoPro Footage of a Wildfire

In the field with America’s elite Native American firefighting crew

More in Technology

More back issues, Sept 1995 to present.

Just In