New Evidence That Climate Change Threatens Marine Biodiversity

A new study uses unconventional but more accurate measures of the effect of climate change on the health of marine ecosystems and uncovers more reasons to be concerned

main burrows9HR.jpg

Even though the world's oceans and seas aren't warming up as fast as landmass, there is still cause for concern for marine life. A new study published in the journal Science presents evidence that the speed and direction of climate change as well as the timing of seasonal shifts are moving just as fast in large bodies of water as in land, and these point to serious conservation problems for regions rich in marine biodiversity.

Scientists led by Scottish Marine Institute ecologist Michael Burrows calculated two metrics -- the velocity of climate change and the shifts in seasonal timing -- that they argue are more accurate gauges of biodiversity, or the health of ecosystems, than traditional temperature records. Using 50 years of global temperature and climate data, they made detailed predictions on the ability of organisms to cope with warming, including biogeographic range shifts and life-cycle changes, that involve much more than simple migration toward the Earth's poles and earlier springs coupled with later autumns. They found that some marine reserves, such as the Coral Triangle in Southeast Asia, may be in danger of losing their ambient temperatures rapidly.

"What we have done is think about warming from a different perspective: If I started off at one point experiencing a particular temperature, how fast and in what direction would I need to walk or swim or crawl to remain at exactly the same temperature?" says co-author David Schoeman. "This takes the idea of warming and turns it from a question of time to a question of space."

In the gallery below, get a glimpse of species and regions that may be threatened by climate change. Then, in the Q&A with Burrows that follows, learn more about how the study came about, why measuring the velocity of climate change is critical, and the data calculations the researchers conducted for these discoveries.

What's the backstory of this project?

The work came out of a workshop at the University of California Santa Barbara. A group of us got together to assess the evidence for ocean life responding to climate change. It struck us right away that there were no expectations available for how far organisms should shift to track temperatures or by how much earlier or later they should do things seasonally. We saw that another study had taken an approach to making predictions about speed of movement or velocity of temperatures for possible future climate scenarios on land, and we thought we could do the same for the oceans to give us expectations to go with observed changes.

What were your team's key discoveries?

When we talk about velocity of climate change, we mean the speed and direction of movement of temperature. So when temperature increases in a particular spot, anything wanting to stay at the same temperature as before needs to move to a cooler place. In an area where there is a very flat thermal landscape, or where temperatures vary little from place to place, that cooler place could be a long way away. And so velocity of climate change would be high. Where cooler places are right next door, like up a nearby mountain range or on the other side of an oceanographic boundary, life only needs to move a short distance to follow temperatures over the same time period. So, the much flatter thermal landscape in the ocean tends to increase velocities, and therefore offsets the effect of greater warming on land to bring the velocities for the two environments closer together. By a similar process, reduced seasonal changes in the ocean tend to push up estimates for seasonal shifts to values close to those for land.

Because thermal landscapes and the amount of warming or cooling are different in different parts of the world, there is a lot of variation in velocities. It so happens that there is an awful lot of species in some of the places where velocities are highest, especially in the tropical oceans. That may have damaging effects on the richness of species in those places, especially when there can be no immigrants from even hotter places to replace those that leave. And conservation measures can't usually protect species from direct effects of climate change. We should especially protect those areas, which provide longer term refuges, where velocities are low, and where refugees from climate change may arrive.

Presented by

Hans Villarica writes for and produces The Atlantic's Health channel. His work has appeared in TIME, People Asia, and Fast Company.

How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well. Bestselling author Mark Bittman teaches James Hamblin the recipe that everyone is Googling.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Global

Just In