Would Lincoln Have Survived If He Was Shot Today?

The anatomy of the President's fatal wound, and what modern medicine could have done for him
More
Lincoln's last formal photograph, taken February 5, 1865 by Alexander Gardner. (Wikipedia)

Abraham Lincoln often spoke and dreamed about being assassinated, convinced that he would not outlast the rebellion when his work would have been done. Prior to his inauguration, he received letters warning him that he would be killed before reaching Washington. After he died an envelope with eighty such letters was found among his effects, and although twice while president he had his hat shot from his head by unknown assailants, he deprecated all attempts to guard his life.

An assassin’s bullet finally found him on April 15, 1865, during a performance of Our American Cousin at Ford’s Theatre in Washington, DC. He was seated in a private box when shot with a .44-caliber bullet fired from a Derringer at close range. The bullet entered the back of his skull to the left of the midline and just above the left lateral sinus (a large venous channel that drains blood from the left side of the brain), which it severed. It penetrated the dura mater (the outermost membrane covering the brain), passed through the left posterior lobe of the brain into the left lateral ventricle, and came to rest in the white matter, just above the anterior portion of the left corpus striatum. It fractured both orbital plates of the frontal bone, causing the eye sockets to become engorged with blood and pushing fragments of bone into the brain.

Dr. Charles A. Leale, a 23-year-old assistant surgeon, U.S. Volunteers, reached the patient within minutes of the shooting and was accosted immediately by a distraught First Lady crying: “Oh, physician! Is he dead? Can he recover?” The President was not yet dead. However, after a cursory examination, Leale announced: “His wound is mortal; it is impossible for him to recover.” At 7:20 a.m., Abraham Lincoln, 16th president of the United States of America, breathed his last, and his spirit fled to God who gave it.

Why Lincoln died is no mystery. His wound, as Dr. Leale predicted, was mortal, because in 1865 little could be done for patients with such wounds. Today modern advances in trauma care have greatly expanded our capacity to manage traumatic brain injuries and have radically altered the prognosis of patients with injuries like Lincoln’s. Could these techniques have saved Lincoln if they had been available in 1865, and if so, what would he have been capable of in the aftermath of such care? These questions were addressed in 2007 by Dr. Thomas M. Scalea, director of the R. Adams Cowley Shock Trauma Center, the world’s oldest such center, at the University of Maryland School of Medicine, during the school’s bicentennial celebration. Dr. Scalea believes that recent advancements in trauma care discussed below would not only have saved Lincoln’s life, but would also have restored much of the President’s neurological function.

Lincoln was shot in the left occiput at close range with a relatively low-velocity bullet. Two young physicians, Dr. Charles Leale, who had graduated from medical school only days before the shooting, and Dr. Charles Taft, just 30 years old, cared for Lincoln. In accordance with the medical practice of the day, they repeatedly probed the President’s wound to prevent blood from accumulating within the skull and compressing his brain. For a time, this maneuver relieved Lincoln’s respiratory distress.

Lincoln’s initial symptoms and his dilated left pupil were caused by cerebral herniation—displacement and compression of vital areas of the brain by blood and edema fluid accumulating within his skull. His physicians remarked that “as long as bleeding continued, the President’s condition remained stable. When the flow stopped, the vital signs weakened … It would produce signs of increased compression. The breathing became stertorous and intermittent, and the pulse became more feeble and irregular.” The most likely path of the bullet that killed Lincoln was through the left lateral sinus. As it traveled through the brain, it created pressure waves that damaged the brain stem (the upper spinal cord). It also produced intraventricular hemorrhage (bleeding into the inner cavities of the brain), a deep laceration of the left cerebral hemisphere, and bilateral subdural hematomas (pools of blood collected on the surface of the brain). In time, these primary injuries (i.e., those occurring at the time of impact) were likely magnified by inadequate delivery of oxygen to the brain resulting from repeated episodes of hypotension and the president’s irregular breathing. This, in turn, caused pressure within the skull (the intracranial pressure [ICP]) to rise, producing additional (secondary) damage to the brain.

[IMAGE DESCRIPTION]
The arteries of the base of the brain (Wikipedia)

Lincoln’s intracerebral hemorrhaging would have caused his ICP to soar. Whereas repeated probing of his wound allowed blood to escape from his skull and for a time relieved his elevated ICP, it also contributed to substantial blood loss. The brain is an extremely vascular organ and when injured bleeds profusely. In fact, Lincoln’s attendants commented that his sheets were crimson and his bed surrounded by a pool of blood. Thus, it is likely that he died because of both cerebral herniation and massive hemorrhaging.

Modern trauma care involves a continuum of activities that can be artificially divided into several phases. The process begins with a preliminary assessment of the patient at the scene of the injury and application of stabilization measures, such as assisted respiration and the administration of intravenous fluids. Appropriate patients are then quickly transported to trauma centers for special- ized care. At the trauma center, another examination is performed to identify immediately life-threatening injuries, which are dealt with as discovered. Next, resuscitation measures as, for example, blood transfusions in the case of Lincoln, are administered as needed, followed by a more systematic, head-to-toe physical examination and appropriate radiographic studies, after which definitive care is given.

Today, a trauma system of this sort would be activated promptly if the President were injured. In fact, whenever the President leaves the White House, area trauma centers are alerted so that they are available immediately in case of illness or injury involving the chief executive. When the President travels in Maryland, the Shock Trauma Center at the University of Maryland is the one alerted and remains on standby, ready to provide care as needed.

Although the advantages of stabilizing trauma patients in the field, so-called “stay-and-play”, versus immediate transport to a trauma center, so-called “scoop-and-run”, might be debated in injuries as severe as Lincoln’s, there is no question that in an urban environment such as the Baltimore/Washington, DC area, with its trauma center literally just minutes away, the “scoop-and-run” option is the best. One might argue, for example, that patients with brain injuries of the magnitude of Lincoln’s should be intubated in the field. However, in a recent survey of patients with severe brain injuries treated in the Maryland Trauma System, an organization with considerable airway-management experience, patients intubated upon arrival at the trauma center had a substantially better outcome than those intubated in the field. Therefore, Lincoln would have been managed best initially by inserting an intravenous line, through which fluids and blood might be administered, and by assisting his breathing, using a ventilation bag attached to a ventilation mask. Once he arrived at the Trauma Center, an endotracheal tube would have been inserted promptly into his upper airway by a trained anesthesiologist.

[IMAGE DESCRIPTION]
Inserting an endotracheal tube (Wikimedia Commons)

Although hyperventilation (rapid forced ventilation) has traditionally been used to reduce brain swelling in patients with severe head injuries, it has not been shown to improve outcome. Hyperventilation does reduce ICP but, unfortunately, does so by diminishing the flow of blood to the brain, which, in turn, reduces the amount of oxygen delivered to the brain. Nevertheless, in patients like Lincoln with impending herniation, hyperventilation is sometimes the only way of lowering ICP rapidly enough to prevent herniation.

Jump to comments
Presented by

Philip Mackowiak is a professor of medicine, and vice chairman of the Department of Medicine, at the University of Maryland. He is also chief of the Medical Care Clinical Center of the Veterans Affairs Maryland Health Care System and the author of Diagnosing Giants: Solving the Medical Mysteries of 13 Patients Who Changed the World and Post Mortem: Solving History’s Great Medical Mysteries.

Get Today's Top Stories in Your Inbox (preview)

Why Did I Study Physics?

In this hand-drawn animation, a college graduate explains why she chose her major—and what it taught her about herself.


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

Why Did I Study Physics?

Using hand-drawn cartoons to explain an academic passion

Video

What If Emoji Lived Among Us?

A whimsical ad imagines what life would be like if emoji were real.

Video

Living Alone on a Sailboat

"If you think I'm a dirtbag, then you don't understand the lifestyle."

Video

How Is Social Media Changing Journalism?

How new platforms are transforming radio, TV, print, and digital

Video

The Place Where Silent Movies Sing

How an antique, wind-powered pipe organ brings films to life

Feature

The Future of Iced Coffee

Are artisan businesses like Blue Bottle doomed to fail when they go mainstream?

Writers

Up
Down

More in Health

Just In