The Solution to Human Regeneration May Hang in a Long-Neglected Branch of Science

Electricity, not DNA, could be the key to unlocking a medical breakthrough.

dissection.jpg

A plate from the De Bononiensi scientiarum et artium instituto atque academia commentarii, produced between 1731 and 1791 (BibliOdyssey).

One night in the late 1700s, Luigi Galvani, an anatomy professor at the University of Bologna, strung up butchered frog legs on his balcony. This in itself was not unusual - they were, in all likelihood, awaiting the dinner plate. But on this night, with the air crackling with electricity from a storm, Galvani noticed something odd: when he touched the legs with a pair of scissors, they twitched. The professor's curiosity was piqued. Soon thereafter, he hung some dissected frogs legs in his laboratory - where, as it happened, he also kept a newfangled machine that captured static electricity, known as a Leyden jar. Anytime the jar was on and someone touched the legs with a metal scalpel, they jumped. It was almost as if they were possessed. 

Galvani wondered if this strange phenomenon could be related to electrical currents. Perhaps the limbs contained some sort of charge, an "animal electricity" essential for life. He thought that this charge was undiscovered biological juice, and, while he was wrong, Galvani was perhaps the first person to purposefully stimulate exposed nerve cells with electricity. Years later, he noted his achievement in a book that recounted more than a decade of such research: "And still we could never suppose that fortune were to be so friend to us, such as to allow us to be perhaps the first in handling, as it were, the electricity concealed in nerves, in extracting it from nerves, and, in some way, in putting it under everyone's eyes."

In the years that followed, Giovanni Aldini, Galvani's nephew and former assistant, went further. In 1802, he connected a primitive battery to a recently severed ox head. It was as if the animal came back to life: its eyes flew open; its ears wriggled; its tongue jerked. Aldini attempted a similar experiment on the corpse of a murderer who'd been hanged in London's infamous Newgate Prison. The effects were much the same: "The jaw began to quiver, the adjoining muscles were horrible contorted, and the left eye actually opened." 

These ghoulish experiments were well known in scientific and popular circles-- Mary Shelley used the notion that electricity could animate life as the foundation for Frankenstein--and interest in the effects of electricity on living creatures continued for the next 150 years. Many efforts were little more than quackery. In England during the 1800s, for instance, electricity was used to treat everything from hysteria to melancholia. Yet the flegdling field of bioelectricity was stalled by a rival branch of science, not fringe thinking. DNA was discovered in the 1950s. A tidal wave of interest followed, and it swept aside the studies that descended from Galvani's.

The search for the commands that shape our bodied became an investigation of the extraordinary interplay between genes and proteins. But as successful as the current approach has been, it does have limits. 

It is odd that electricity has been so negelected, because it is everywhere in our bodies. Ions flow in and out of our cells. Voltage pulses speed down our nerves. We are, in effect, walking electrical networks. The significance of this is readily accepted when it comes to the nervous system and the heart - think of the electrical pads used to revive someone after a heart attack. But in many ways, we remain stuck in an eighteenth century mindframe, aware of the electric signals that course through our bodies but oblivious to the ways in which they could play a subtler, and more profound, role in our development.

Presented by

Cynthia Graber is an award-winning print and radio journalist who covers science, technology, agriculture and more. She’s currently a Knight Science Journalism fellow at MIT.

The Blacksmith: A Short Film About Art Forged From Metal

"I'm exploiting the maximum of what you can ask a piece of metal to do."

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus

Video

Riding Unicycles in a Cave

"If you fall down and break your leg, there's no way out."

Video

Carrot: A Pitch-Perfect Satire of Tech

"It's not just a vegetable. It's what a vegetable should be."

Video

An Ingenious 360-Degree Time-Lapse

Watch the world become a cartoonishly small playground

Video

The Benefits of Living Alone on a Mountain

"You really have to love solitary time by yourself."

Video

The Rise of the Cat Tattoo

How a Brooklyn tattoo artist popularized the "cattoo"

More in Health

Just In