2013: Year of the Stem Cell

Researchers have already safely injected stem cells into patients with neurodegenerative diseases and spinal cord injuries -- and they've seen the potential to vastly improve lives.

Mont Ventoux 615 x2.jpg
Knut Olstad in August 2011, 20 minutes before the accident that left him paralyzed below the waist

Marcus Hilton has probably been going blind since he was born, though he didn't really begin to notice that something was wrong until he was seven or eight. Several years after that, he was officially diagnosed with Stargardt disease, the leading cause of juvenile blindness. Thirty-four years of decline later, his retinas irreparably damaged, he is unable to drive, read fine print, or recognize people from a distance.

For Knut Olstad, devastation came much more suddenly. Having quit smoking and taken up cross-country skiing and bicycling in an early mid-life crisis, he was 45 years old and on what he described as the vacation of his life, conquering 25 mountains on the Tour de France route. On the last descent of the twenty-fifth mountain, on what might even have been the final turn of the entire trip, a car veered into his lane. He swerved out of the way, squeezed just a little too hard on the front brake ... the next thing he remembers is waking up, immobile, in a hospital where equipment beeped ominously through his morphine fog and everyone spoke a foreign language.

"I thought I was in a science fiction movie," he recalled over the phone from his home in Norway. And even as he's slowly been able to make sense of what happened to him, his life since then has, in a way, remained in the realm of the abnormal.

In 1998, when human embryonic stem cells were first isolated, we anticipated a "rush of medical advances," as The New York Times put it. That promise -- along with all of the ensuing controversy -- is still alive, has already become reality in select cases -- for example, with bone marrow transplantations -- and still has plans to live up to all of the expectations that have been set for it.

Atlantic writers preview the stories, trends, and ideas to watch. See full coverage

"The question now," the Times wrote then, "is what use can be made of the potentially awesome power to rejuvenate human cells." After 15 years, there are a lot of people waiting for a miracle, for the day cell-based therapy gives back what's been taken from them.

People blind from macular degeneration, like Hilton, who's blind "on paper only" but hopes that research will forge ahead to help not just him, but everyone suffering from degenerative diseases.

People with spinal cord injuries, like Olstad, who is still struggling to come to terms with the fact that he had just turned his life around when life, in turn, put him in a wheelchair.

People losing their minds to Alzheimer's, and their bodies to Parkinson's and ALS. People with heart disease, diabetes, and cancer; children with genetic brain disorders who aren't expected to live to see their tenth birthday.

Stem cells were only quietly on the radar in 2012. In October, the Nobel Prize was awarded to John Gurdon and Shinya Yamanaka, who are lauded for laying the foundation of regenerative medicine, for work done, in Gurdon's case, in 1962, and, for Yamanaka, more recently in 2006. In the labs, those on the front lines of stem cell research have seen important results: the first preliminary data on a clinical trial at UCLA with embryonic stem cells was published at the end of January, funded by the company Advanced Cell Technology (ACT). In September, the first data from neural stem cells being used in human spinal cord patients in a hospital in Zurich was presented by StemCells, Inc, and in October, the company published data from a second trial in children with a fatal disorder affected their brains' myelin production -- the first trial, which was also the first to receive FDA approval to transplant neural stem cells into children, took place in 2006.

The findings come from two different areas of the field: ACT works with what are known as pluripotent stem cells, which can be made to turn into any cell in the body. StemCells, Inc., on the other hand, uses tissue-specific, or "adult," stem cells, which have already become what they are -- in this case, brain tissue.

And the progress, thus far, looks something like this: Knut Olstad could feel a finger placed on his stomach almost 50 percent of the time, and brain scans of electrical stimuli back up his assertion that some feeling has indeed been restored to where previously, there had been none.

Knutinset.jpg Knut Olstad with his girlfriend this past summer

Three of the six children from the first neural stem cell trial have since died from their disease, but autopsies showed that the stem cells survived and migrated throughout their brains. Children in the second trial have been making modest gains, and their cells are creating new myelin, as they're intended to.

The small area of Hilton's retina that was injected with pigmented cells at Moorsfield Eye Hospital in London has retained that pigmentation after 16 months, meaning the cells haven't been rejected. Some of the two dozen similar patients are saying they can see purples and blues again.

It's small and non-definitive progress, yes, and researchers have done their due diligence not to overinflate reality. The press has been similarly subdued, hinting only at signs of "potential." But when Hilton and Olstad signed up to participate in clinical trials, their doctors were extremely cautious not to make any promises. The men, after all, were both taking part in safety trials -- the goal was only to see whether hundreds of thousands -- or in Olmstad's case, millions -- of stem cells could be injected into human subjects without tumors forming, for example, and without the patients being harmed by the immunosuppressants they're required to be on. They were chosen to participate precisely because of how absolute their disabilities were. For something to go right -- for any improvements in their conditions to be seen at all -- was not part of the plan.

Presented by

Lindsay Abrams is an assistant editor at Salon and a former writer and producer for The Atlantic's Health Channel.

Saving the Bees

Honeybees contribute more than $15 billion to the U.S. economy. A short documentary considers how desperate beekeepers are trying to keep their hives alive.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


How to Cook Spaghetti Squash (and Why)

Cooking for yourself is one of the surest ways to eat well.


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Health

Just In