Study of the Day: How Can Rescuers Detect Trapped Humans?

Stuck in a building following a major disaster? Don't fret. Thanks to new research, all you may have to do to get rescued is breathe.

main Morteza Nikoubazl Reuters RTX7I8C.jpg

PROBLEM: When trapped inside a collapsed building, disaster victims release volatile metabolites or products of the body's breakdown mechanisms through their breath, skin, and bodily fluids. Complex interactions with building materials, humidity, heat, and wind, however, make these substances more difficult to detect. In the aftermath of 9/11 and more recent disasters in New Zealand and Japan, how can rescuers better detect trapped humans? More specifically, what should their portable sensors look for?

METHODOLOGY: Researchers from the National Technical University of Athens, University of Babe-Bolyai, University of Dortmund, and Loughborough University analyzed molecules in the breath, sweat, and skin of eight trapped people in a five-day simulation of a disaster site. They examined flumes of air to create a profile of molecules that could indicate human life.

The simulator, which was designed, built, and tested by the researchers, had three sections: the environmental section, which maintained airflow, humidity, and temperature; the void section, where the participant stayed in six-hour intervals; and the collapsed-building section, which was composed of densely packed building materials. A variety of high-sensitivity sensors throughout the simulator rapidly detected materials, such as carbon dioxide and ammonia, in the rubble. The authors say the experiment is the first disaster simulation to use human participants.

RESULTS: There was a marked decrease in ammonia levels when the participants were asleep. The scientists also found a build-up of acetone as the participants grew hungrier as well as detectable molecules in their urine.

CONCLUSION: A post-calamity device could be deployed in large numbers and used in the field to detect signs of life for prolonged periods, says co-author Paul Thomas in a news release. Such a tool, he adds, may replace trained search dogs that are working at risk to themselves and their handlers for 20 minutes before needing extensive rest.

SOURCE: The full study, "The Trapped Human Experiment," is published in the Journal of Breath Research.

Image: REUTERS/Morteza Nikoubazl.

Presented by

Hans Villarica writes for and produces The Atlantic's Health channel. His work has appeared in TIME, People Asia, and Fast Company.

'How Do You Function Without a Cellphone?'

A short documentary about a San Francisco designer who doesn't own a cellphone, and a teenager who can't imagine life without hers.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register with Disqus.

Please note that The Atlantic's account system is separate from our commenting system. To log in or register with The Atlantic, use the Sign In button at the top of every page.

blog comments powered by Disqus

Video

A History of Contraception

In the 16th century, men used linen condoms laced shut with ribbons.

Video

'A Music That Has No End'

In Spain, a flamenco guitarist hustles to make a modest living.

Video

What Fifty Shades Left Out

A straightforward guide to BDSM

More in Health

Just In