Where the Next Great Cancer Drug Might Be Coming From

More

"Phase 0" drug trials could cut R & D costs by hundreds of millions of dollars. So why isn't Big Pharma interested?

cancerphase0_wide.jpg
Where is the next great cancer drug? The number of new drug approvals has declined in the past few years, and despite rare breakthrough successes like Gleevec (for chronic myelogenous leukemia) and Herceptin (for breast cancer), most new "targeted therapy" drugs have offered painfully minimal gains in survival time. As a 2006 FDA report describes, in 1985, a novel agent entering the drug development cycle had a 14 percent chance of getting to market; by 2000, that chance had dropped to 8 percent. Meanwhile, the cost to take a drug from lab to patients increased by 55 percent from 1993 to 2003.

There's no sidestepping the painstaking lab work to find new ways to treat cancer. But there is a way to speed up development of potent new compounds and more quickly jettison the rejects: the phase 0 trial. As various technologies for watching what chemicals do once they get into our bodies have become available, researchers have gained the ability to test whether an agent they hope will target a specific cancer-generating mechanism actually hits its target. The cost of developing a new cancer drug is around a billion dollars. If a compound that hits its target in cultured cells and animals is shown not to do the same in a small group of humans, that could save hundreds of millions of dollars, not to mention several years. That is, if the pharmaceutical industry decides to play along.

The phase 0 study can turn the so-called "valley of death"—the chasm between studying a drug in animals and generating enough toxicology data and cash to study it in humans—into a few months' hike.

The process by which new anticancer drugs are tested is notoriously laborious. If a compound is active against cancer cells cultured in a lab, it is given to animals. If those tests look promising, human studies follow in three phases. Phase I "dose escalation" studies enable researchers to identify the maximum tolerated dose—that is, the highest dose at which the new agent can be given safely. Essentially, phase I ensures that a new drug won't kill a person in the process of making him or her well. In phase II, the drug is usually given in combination with an already approved treatment in a larger population of patients, usually at several centers across the country. Phase III are randomized trials involving a large group of patients and a "control" treatment, and are the last step before FDA review.

Although the phase 0 study has been around for a while, the concept has recently come into its own. The process was developed jointly by the National Cancer Institute and the Food and Drug Administration and was approved by the FDA in 2006. To be sure, there are many alternative trial designs (and funding for them), and collaborations between drug companies and the public sector, as well as academia, are on the rise. But the phase 0 study is especially promising. Because the goal is most commonly to confirm that the drug works as everyone thinks it will, a phase 0 study requires a very small number of patients—usually 10 or fewer—and very small doses of the drug. That's much more doable than even a phase I study.

The phase 0 study can turn the so-called "valley of death"—the chasm between studying a drug in animals and generating enough toxicology data and cash to study it in humans—into a few months' hike. Such was the case with ABT-888, a new drug from Abbott Laboratories. A phase 0 trial conducted by investigators at the National Cancer Institute confirmed that the agent, which was thought to inhibit the DNA-repairing enzyme PARP, was doing just that. The phase 0 study was ideal for testing ABT-888. The drug was designed to hit a certain cellular target, and the study, which enrolled 13 patients with advanced cancer, confirmed that the drug was going from point A to point B. As Shivaani Kummar, lead investigator of the study, explains, Abbott would have had to wait another year before launching a phase I study. After the successful phase 0, ABT-888 was able to go straight to phase II combination studies (several are ongoing).

Jump to comments
Presented by

Jessica Wapner writes about biomedical issues for Scientific American, Slate, Science, New York, Nature Medicine, Ode, and elsewhere. She also writes Work in Progress for the Public Library of Science's blog network.

Get Today's Top Stories in Your Inbox (preview)

The Ghost Trains of America

Can a band of locomotive experts save vintage railcars from ruin?


Elsewhere on the web

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register. blog comments powered by Disqus

Video

Why Did I Study Physics?

Using hand-drawn cartoons to explain an academic passion

Video

What If Emoji Lived Among Us?

A whimsical ad imagines what life would be like if emoji were real.

Video

Living Alone on a Sailboat

"If you think I'm a dirtbag, then you don't understand the lifestyle."

Video

How Is Social Media Changing Journalism?

How new platforms are transforming radio, TV, print, and digital

Video

The Place Where Silent Movies Sing

How an antique, wind-powered pipe organ brings films to life

Feature

The Future of Iced Coffee

Are artisan businesses like Blue Bottle doomed to fail when they go mainstream?

Writers

Up
Down

More in Health

Just In