How Things Get Popular

Guest post by Gabriel Rossman -- Sociologist at UCLA.  His work applies economic sociology to media industries. He blogs at Code and Culture and is the author of Climbing the Charts.

[Since our hostess requested that I talk a bit about my forthcoming book during my guest-blogging stint I'm posting an excerpt describing the two fundamental patterns through which things get popular.]

This book's substantive concern of how songs become hits on the radio is part of a more general class of problems in social science known as the diffusion of innovation. This literature covers a wide variety of substantive areas where actors within a population each decide if and when to adopt an innovation. The seminal studies in this field were about such eclectic phenomena as:

The innovations described in the literature range from drastic changes that reorder the actor's cultural and economic experience to fairly minor variations on incumbent practices for which "innovation" is perhaps too grandiose a term. In current sociology, one of the main applications of diffusion analysis is asking such questions as when firms adopt new business practices or how activists adopt new tactics.


At the most basic level, one can study diffusion simply by drawing a graph and looking at its shape to see whether it is more concave or more s-shaped. The graph shows typical curves of each ideal type. The shape of the graph is informative because different processes create differently shaped graphs; thus, seeing the shape of the graph gives very strong clues as to the process that created it. In a diffusion graph the x-axis is time, which can be denominated in whatever unit is appropriate. Many of the canonical studies measure time in years, but tetracycline spread in a matter of months, and pop songs usually spread even faster. The y-axis is how popular the innovation is at a particular time. Usually the y-axis is cumulative, showing how many actors have adopted the innovation to date, though sometimes they are plotted as instantaneous, showing how many actors are adopting in each period.

This implies that diffusion is about seeing how many actors adopt the innovation in each period, and it is, but this can be misleading. The reason is that it's quite a different thing for a hundred out of a thousand to adopt than for a hundred out of a hundred. The number of actors who have yet to adopt as of a time is the "risk pool," and the proportion of the risk pool who adopt in a time interval is the "hazard" rate. For a given hazard, the raw number of adoptions decreases as the risk pool shrinks. This is a case of Zeno's paradox, in which fleet- footed Achilles races a tortoise but allows the reptile a head start. If in each minute he closes half the remaining distance, then after the first minute he will have closed 1/2 the distance, after the second minute, 3/4 of the initial gap, then 7/8, 15/16, 31/32, etc. Returning to diffusion, imagine that a thousand doctors have a hazard rate of 10 percent for adopting tetracycline. In the first month 100 doctors (a tenth of 1,000) will write their first prescriptions for tetracycline; in the second month 90 will adopt, for a total of 190 doctors prescribing it; in the third month 81 will adopt, for a total of 271, and so on. In this example the hazard remains constant at one-tenth per month. Therefore, the proportion of the risk pool converted in each period is the same, but the raw volume decreases rapidly. This results in the concave-shaped curve labeled constant hazard" in the graph, which shows rapid growth initially and asymptotically limited growth thereafter.

So far we have assumed that the hazard is constant. This may be warranted if we imagine that there is some constant force acting in the population and encouraging actors to adopt the innovation, such as a marketing campaign with a fixed budget. For this reason these curves are often known as "external influence" in that the innovation is being spread by something outside of the population adopting it. However, imagine that the innovation is spread as an endogenous process within the population, perhaps by word of mouth. This might be because there is no marketing budget or because the actors simply don't trust advertisements or salesmen to provide impartial advice. For instance, imagine that farmers are deciding to plant a new type of maize that presents higher risk but offers higher reward. Most farmers are hesitant to make so radical a change, but one farmer is willing to experiment with the seed and, on seeing his higher crop yields, he tells two neighbors about his satisfactory experience and they try it. After their own satisfactory experiences they in turn each tell two others. If each person using the corn tells two new neighbors about it, then one farmer will plant it in the first year, three in the second, nine in the fourth, twenty-seven in the fifth, eighty-one in the sixth, and so on. This pattern shows slow diffusion at first, but follows exponential growth so that once the innovation reaches a critical mass of the population, it diffuses rapidly.

Presented by

Megan McArdle is a columnist at Bloomberg View and a former senior editor at The Atlantic. Her new book is The Up Side of Down.

Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.

Join the Discussion

After you comment, click Post. If you’re not already logged in you will be asked to log in or register.

blog comments powered by Disqus


Before Tinder, a Tree

Looking for your soulmate? Write a letter to the "Bridegroom's Oak" in Germany.


The Health Benefits of Going Outside

People spend too much time indoors. One solution: ecotherapy.


Where High Tech Meets the 1950s

Why did Green Bank, West Virginia, ban wireless signals? For science.


Yes, Quidditch Is Real

How J.K. Rowling's magical sport spread from Hogwarts to college campuses


Would You Live in a Treehouse?

A treehouse can be an ideal office space, vacation rental, and way of reconnecting with your youth.

More in Business

Just In